
Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

1/27/2015 Final Technical Report 02/25/10 - 08/31/14

High-Accurate, Physics-Based Wake Simulation Techniques N00014-10-C-0190

Andrew Shelton 
Robert Watson III

Auburn University 
310 Samford Hall 
Auburn, Al, 36830

Office of Naval Research 
875 North Randolph St. 
Arlington, VA 22203-1995

ONR

A code was developed that utilizes the discontinuous Galerkin method to solve the Euler equations while utilizing a modal artificial 
viscosity sensor developed by Klockner . The sensor was augmented for the purpose of this research so that it could be run more 
quickly as well as having a more robust adaptation to different problems and specifically for this research the vortex burst problem. 
The sensor had a number of flops reduced from its calculation through the use of a different approach for creation of the modes. 
This new approach was based off of multiplying through by the Vandermonde matrix built from a one dimensional system instead 
of a three dimensional system. This was done by taking the cube of nodes for a cell and multiplying it by slices of data. The sensor 
was then made more robust by changing the value by which baseline decay model was added to the modes. The baseline decay 
model is needed to remove white noise from being sensed upon. Both these changes were reflected in examinations of routine test 
problems involving the Sod shock tube and the Kelvin-Helmholtz phenomena. With test cases validating the improvements to the 
sensor, the approach was then used against an element of wake vortex flow to show the sensor's robustness. Through plotting the 
pressure, vorticity, and total kinetic energy the test case was validated against previous research.

UU UU UU UU 79

John M. Mason

(334) 844-4438

Reset



Distribution Statement A: Distribution approved for public release;
distribution is unlimited

High-Accurate, Physics-Based Wake
Simulation Techniques

Final Technical Report project

Grant: N00014-10-C-0190

by:

Andrew Shelton, Robert M Watson III

Aerospace Engineering Department
Auburn University

Auburn, Al, 36830, USA
Phone: 850-882-8541

email: andrew.b.shelton@leidos.com

Prepared for:
Office of Naval Research

875 North Randolph Street
Arlington, VA, 22203-1995

January 27, 2015



Contents

1 Summary 5

2 Introduction 6
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 A Brief History of Wake Theory . . . . . . . . . . . . . 7
2.3 Development of Numerical Methods . . . . . . . . . . . . . . . 9
2.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Discontinuous Galerkin Method 10
3.1 Polynomials for Cells . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Cell Mapping . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Nodal Analysis . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Numerical Quadrature . . . . . . . . . . . . . . . . . . 15
3.2.4 Combining the Two Analysis . . . . . . . . . . . . . . 16

3.3 Operator Form . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Elementwise Operator . . . . . . . . . . . . . . . . . . . . . . 20

4 Implementation of Euler Equations 23
4.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 AUSM+-up for all speeds . . . . . . . . . . . . . . . . . . . . . 25
4.3 Integration through time . . . . . . . . . . . . . . . . . . . . . 28
4.4 Artificial Viscosity Sensor . . . . . . . . . . . . . . . . . . . . 28
4.5 Improving the Efficiency of the Code to Increase its Speed . . 31

4.5.1 Sparse Matrix . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Sensor Improvement 34
5.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Kelvin-Helmholtz . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Sod Shock Tube . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Results for Sensor Validation . . . . . . . . . . . . . . . . . . . 38
5.2.1 Sensor Validation in Two Dimensions . . . . . . . . . . 38
5.2.2 Implementation into Three Dimensions . . . . . . . . . 45

Auburn University
1



6 Three Dimensional Vortex Problems 56
6.1 Generation of the Initial Condition . . . . . . . . . . . . . . . 56
6.2 Velocity Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Two Dimensional Initial Condition . . . . . . . . . . . . . . . 60
6.5 Three Dimensional Extrusion . . . . . . . . . . . . . . . . . . 61
6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Conclusions 76

List of Figures

1 1D discretization of a domain into three elements . . . . . . . 11
2 Cells having different boundary values . . . . . . . . . . . . . 12
3 Basis Function of PN . . . . . . . . . . . . . . . . . . . . . . . 17
4 Location of all non zero values in stiffness matrices . . . . . . 32
5 Location of all non zero values in lifting matrices . . . . . . . 33
6 Wall time for utilizing multiple threads for the Isentropic Vor-

tex Test Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 Initial condition showing the concentration s . . . . . . . . . . 36
8 Initial Condition of density (ρ) . . . . . . . . . . . . . . . . . . 37
9 Total kinetic energy over time . . . . . . . . . . . . . . . . . . 39
10 Sensor in X Direction at time 49.49 s . . . . . . . . . . . . . . 40
11 Sensor in Y Direction at time 49.49 s . . . . . . . . . . . . . . 40
12 Sensor in X Direction at time 76.99 s . . . . . . . . . . . . . . 41
13 Sensor in Y Direction at time 76.99 s . . . . . . . . . . . . . . 41
14 Comparison of the two states at time 76.99 s . . . . . . . . . . 42
15 Sensor through time X . . . . . . . . . . . . . . . . . . . . . . 46
16 Sensor through time Y . . . . . . . . . . . . . . . . . . . . . . 46
17 Sensor through time Z . . . . . . . . . . . . . . . . . . . . . . 47
18 Comparison of Sensor using all states or one . . . . . . . . . . 48
19 Zoomed in comparison of the baseline decay variation . . . . . 49
20 Comparison of different preselected weighting vectors . . . . . 50
21 The minimum necessary normalized average to trip a specific

s value for noise . . . . . . . . . . . . . . . . . . . . . . . . . . 52
22 The minimum necessary normalized average to trip a specific

s value for a step function . . . . . . . . . . . . . . . . . . . . 53

Auburn University
2



23 Using the new scale derivation to replace ynorm . . . . . . . . . 55
24 vθ for the vortices of two different core sizes . . . . . . . . . . 57
25 Example of Symmetric Boundary Condition on a Vortex . . . 59
26 Plot of the minimum pressure evolving through time for a

polynomial of the 9th order with a grid Ni=Nj=20 and Nk=25 63
27 Plot of the minimum pressure evolving through time for a

polynomial of the 9th order with a grid Ni=Nj=25 and Nk=30 64
28 Plot of the minimum pressure evolving through time for a

polynomial of the 9th order with a grid Ni=Nj=25 and Nk=35 64
29 Plot of the minimum pressure evolving through time for a

polynomial of the 9th order with a grid Ni=Nj=25 and Nk=40 65
30 Plot of the minimum pressure evolving through time for a

polynomial of the 9th order with a grid Ni=Nj=25 and Nk=45 65
31 Plot of the minimum pressure evolving through time for a

polynomial of the 13th order with a grid size of Ni=Nj=17
and Nk=25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

32 Temporal evolution of the profile of minimum pressure in the
vortex core for simulation DNS2[16] . . . . . . . . . . . . . . . 66

33 Isosurfaces of vorticity magnitude for a polynomial of the 9th

order with a grid Ni=Nj=25 and Nk=30 . . . . . . . . . . . . 69
34 Isosurfaces of vorticity magnitude for a polynomial of the 9th

order with a grid Ni=Nj=25 and Nk=40 . . . . . . . . . . . . 70
35 Isosurfaces of vorticity magnitude for a polynomial of the 9th

order with a grid Ni=Nj=25 and Nk=40 . . . . . . . . . . . . 71
36 Isosurfaces of vorticity magnitude for a polynomial of the 9th

order with a grid Ni=Nj=25 and Nk=45 . . . . . . . . . . . . 72
37 Isosurfaces of vorticity magnitude for a polynomial of the 13th

order with a grid Ni=Nj=17 and Nk=25 . . . . . . . . . . . . 73
38 Isosurfaces of vorticity magnitude of run DNS2 (Trot = 2πrc/Vθmax).[16] 74
39 Plot of the integrated total kinetic energy error versus time

for the cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
40 Plot of the integrated total kinetic energy normalized for each

case versus time . . . . . . . . . . . . . . . . . . . . . . . . . . 75

List of Tables

1 Kelvin Helmholtz, N=9, Ni=27, Nj=18 . . . . . . . . . . . . . 44

Auburn University
3



2 Sod Shock Tube, Ni=99, Nj=1 . . . . . . . . . . . . . . . . . . 44
3 Sod Shock Tube, Ni=50, Nj=50 . . . . . . . . . . . . . . . . . 44
4 RMS Error for Sod Shock Tube 3D . . . . . . . . . . . . . . . 46
5 RMS Error for Sod Shock Tube 3D . . . . . . . . . . . . . . . 50
6 s values for 9th order polynomials . . . . . . . . . . . . . . . . 54
7 RMS Error for Sod Shock Tube 3D . . . . . . . . . . . . . . . 55

Auburn University
4



1 Summary

What follows is a report based off of the research done for this grant. It
was done with the purpose of utilizing the Euler equations with an artificial
viscosity sensor to accurately and efficiently model the wake of an aircraft
or rotor craft. This report also utilizes research from two others who worked
under this grant in Rachel Reitz and Joshua Favors whose work consisted
of testing the resolution and boundary placement as well as comparative
analysis of two different types of sensors, one based on entropy the other
based on exploiting the modes.

This report focused on the use of an artificial viscosity sensor for three
dimensional application to the wake. For the wake it focuses on validation
for modeling the vortex bursting element. Two changes were made to the
sensor to both increase the speed of the sensor’s application as well as make
the sensor more robust. The sensor was made more robust by allowing for
the sensor to sense on more variables by changing the baseline decays ad-
ditive factor. In this case the change made allowed for sensing on velocity
terms where the velocity may not always have a value greater than zero. To
increase the speed the transition from a nodal system to a modal system
was augmented so that the flop count could be reduced. These changes were
tested against two standard problems and then applied to the vortex bursting
problem.
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2 Introduction

2.1 Motivation

The world is full of highly difficult engineering and scientific problems that
cannot be solved by conventional means such as the Navier-Stokes equations.
This is why experiments are developed to replicate the physics, analyze it and
unwrap the physics occurring in these problems. There is a problem with a
pure experimental approach though in that the cost surrounding the develop-
ment and running of these experiments can be very high. This problem has
fueled the development of different numerical techniques to supplement these
experiments in solving the partial differential equations that govern physics.
This is not to say that any numerical simulation can replace an experiment.
Their usefulness lies in their ability to provide guided experiments to reduce
the cost of running multiple live experiments. This development has led to a
major focus of modern numerical techniques to solve the partial differential
equations that govern the physics of these problems.

The desire to always further the study of numerical techniques has led
to many vast improvements in both their implementation and the types of
solvers available. A major development was moving from the single point
finite difference (FD) method into the finite volume (FV) and finite elements
(FE) methods which utilize elements. The goal of all these methods was
centered on being accurate to the physics of the problem while also making
itself faster than previous iterations allowed. To further improve upon these
methods accuracy a 4th method was developed, the discontinuous Galerkin
(DG) method . This method has been introduced relatively recently com-
pared to the other methods. This causes a necessity to improve the scheme
and make it more robust and efficient in order to remove any qualms about
the method. This is very common with numerical techniques whenever they
are developed.

This report utilizes this DG method to model features of wake flow and
improves upon an existing sensor to make it more robust for a multitude of
problems. The eventual goal is to eventually develop a fully realized wake
modeling code utilizing these techniques. The simulation of a full wake is
highly important for all types of engineering problems spanning from airport
takeoffs and landings to the development of car drafting techniques. There
is a reason these problems are so crucial and interesting though and that is
the problems they present in order to be correctly modeled. A very large
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problem is wrapped in the scale of the problem. It is very difficult to try and
capture all of the physics of the problem through a correctly sized domain
because it will always lead to a preference being placed on either the small
or large scale features. This is why not only the DG method can be a vast
improvement but the adaptive DG allows for an even better solution. For
the scope of this report certain key features will be examined.

A common feature in the evolution of a wake is the sudden change in a
vortex core with no change in its circulation due to a vortex bursting. This is
a well established phenomena and the problem has been undertaken by many
modern day codes utilizing both the large eddy simulation (LES) and direct
numerical simulation (DNS) . These techniques are very useful but also are
very intricate in how they work and thus require a large amount of time to
be run. By studying and comparing the data developed from this current
configuration to the ones already on file the goal is established to prove this
method’s effectiveness.

2.2 Background

Since this work is based on a key aspect of wake evolution a brief history of
the development of wake analysis theory and its applications follows. This is
then followed by a general overview of the history of the DG method.

2.2.1 A Brief History of Wake Theory

The concept of aircraft wakes has been an important aspect of aviation for a
long time. The wake has strong impacts on a multitude of situations such as
aircraft taxiing and deployment of rotocraft on aircraft carriers. The decay
of vortices throughout the wake plays one of the most important roles in
this research especially at airports. On a grander scale there is a hope that
with the development of a better understanding of vortices, the same will
be said of turbulence. Turbulence remains one of the greatest mysteries of
the modern era while also being one of the most divisive topics to discuss.
The exact definition of turbulence is not something that is even unilaterally
agreed with.

The analysis of aircraft wakes has been undertaken for as long as aircraft
have existed. Scientists such as Crow [6] spent a lot of time developing
analytical theories and models in the 1970’s. Crow’s work was about an
understanding of the vortices contained in the wake of an aircraft being
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dispersed through natural means. Crow in fact developed the theory behind
a common instability that has been well validated by todays experiments and
simulations. This instability today is proclaimed as the Crow instability. In
the time between 1970 and the mid 1990’s wake modeling had advanced
from a dependence on different analytical models to accepting the use of
computational fluid dynamics models to supplement some of the research.
The scientists Lewellen and Lewellen [13] in 1996 developed one of the first
extensive three dimensional models of vortex wakes using a custom version
of LES where they focused on different aspects of the gas dynamics and
chemistry. They specifically focused on the chemistry of the engine wake
from the aircraft and it’s interaction with the atmosphere.

The work of Crow and others was then brought together by Spalart [21]
in 1998 who provided an encompassing survey of the knowledge about wakes
to that point. He discusses a multitude of issues concerning the propaga-
tion of wakes from aircraft and different aspects of analyzing them through
experimental setups at airports. He makes special note of the struggles in
developing a model due to the limitations of the assumptions needed in CFD
of that era. He also helped develop some of the base theory concerning the
vortex bursting, challenging a preconceived notion that bursting was the de-
struction of vortices, which holds no weight when examining the argument
from the standpoint of circulation.

These issues are still being examined and resolved in today’s climate es-
pecially concerning CFD and experimental. Multiple programs have been
established such as the Aircraft Vortex Spacing System (AVOSS) used by
NASA to study these vortices and establish more scientifically based param-
eters especially with the influence of the atmosphere. Gerz et. al. [8] utilizes
the data from AVOSS along with other similar agencies discusses different
ways to discuss further change that can be applied to airports. Their goal
was to propose ways to increase the efficiency of airports by utilizing known
data about wakes in order to increase the number of commercial aircraft that
can take off and land over the course of a day.

A common element of all the research is the breakdown of vortices which
is explicitly examined by Holzäpfel[11] et. al. This group examined the ef-
fects of primary and secondary vortices, which are created through moderate
turbulence from the ambient flow, have on each other in the case of decay
through numerical simulations. It is also examined by Moet et. al.[16]. Their
research is used as the basis for the vortex bursting validation undertaken in
this research.
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2.3 Development of Numerical Methods

In engineering, and science in general, the development of suitable numerical
techniques has been a staple of research for many years. Common methods
have been used with the FD, FV, and FE methods. In terms of modern
CFD the majority of codes use second order accurate FV [23] methods or
FD methods. While these methods are useful they do not fulfill the long term
goals of the numerical sciences. They are difficult to increase the order of
accuracy as the mesh complexity is increased moving from pure Cartiesian
to non-uniform meshes with triangular elements. They are also expensive
computationally for the spatial discretization of problems. This is not a
problem with the Finite Element method but it has major flaws in that for
each time step the entire matrix is solved at once creating inconsistencies
when applied to the physics of a fluid mechanics problem where information
changes with the flow.

These desires led to the development of a new method of solving PDE’s
that gave the flexibility required for solving two dimensional and three di-
mensional problems while also allowing for a higher order of accuracy akin
to FE codes. This new method was called the DG method. This method
was first proposed as a new way to solve the neutron transport equation
by Reed, etc. [18]. The method slowly grew in its different applications
to different fields but it was not till the mid 1990’s that this method ex-
ploded into applications to CFD. Advances were made in the development
of Runge-Kutta DG methods that provided an explicit and cheap method to
use in the solution of problems. In 1996 [2] and 1997 [3] Bassi and Rebay
published two papers creating the local DG (LDG) method and applying it
to the Euler and Navier-Stokes equations respectively. This method further
improved the previous results because in the previous DG methods only the
time discretization was discontinuous but now both space and time were.

The LDG method quickly became one of the most useful adaptations
of the method. Cockburn and Shu [4] analyzed this method and showed
the great promise that comes from its inherent flexibility. It’s discontinuous
nature throughout allows for easy adaptations to parallel processing which
would allow for the code to become much faster. They would later compare
this method against versions of the DG method[5]. Here they found the LDG
method had inherent advantages in adapting to not only elliptical PDE’s
but also hyperbolic and parabolic PDE’s allowing for a more general use
of this method to problems even outside of the realm of CFD. This was
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further explored by Yan and Osher [24] in the solving of the Hamilton-Jacobi
problems. This was then taken further by Kevin Albarado when he purposed
the DG method to solve the Hamiltonian for the burning of a two dimensional
start solid rocket grain[1].

2.4 Objective

The purpose of this report is to further the development of a robust DG
scheme based on the Euler equations and implementing an artificial viscos-
ity sensor that has been augmented to make it more applicable to different
this problem. Artificial viscosity is a necessity in that even though the Eu-
ler equations are inherently invisicid, the numerical equations solved have a
viscous term when backed into their conservative forms. This is normally
taken care of in the inherent dissipation in the numerical scheme but with
the high order of the DG method this needs to be readdressed. This artifi-
cial viscosity sensor will be altered and improved upon in order to allow for
more versatility and robustness on a range of problems from shocks to vortex
interactions while also increasing the speed which is always important when
working with numerical simulations and especially when these problems take
place in three dimensional space. Different test problems will be examined in
order to accurately show the effects of these two changes to these important
factors.

After the sensor has been tuned for optimal use on three dimensional
problems the vortex bursting problem will be solved. This will be done by
using a complex method for developing the initial condition that utilizes a
pseudo-steady state problem. The mesh size and polynomial order will be
varied to show the effects on the full problem. The helical instability will
be tripped as well to show a more physically accurate problem as well as to
show that the sensor can account for artificial viscosity where needed but not
overload the problem and ”wash out” useful and accurate physics from the
problem.

3 Discontinuous Galerkin Method

What follows is the development of the DG method and a process to apply it
to a simple one dimensional problem. This analysis follows a procedure done
by Hesthaven et. al. [10]. The DG method is a hybrid of sorts of the FV and
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FE methods in order to gain the distinct advantages of each method. This
allows the new method to have the geometric flexibility of a FV code while
allowing for much more flexible method of creating a higher order of accuracy
spatially. This is a major problem in many current CFD codes running FV
solvers. The simple one dimensional transport equation will be used as a
tool for the application of this method where u represents the velocity of the
wave.

∂u

∂t
+
∂f(u)

∂x
= 0 (1)

The first part of any numerical scheme is to take the domain of the prob-
lem (Ω) and discretize it into K number of cells for a new domain (Ωh) .
The point of discretization is to break a domain into something that can be
solved computationally. Each of these cells attaches to surrounding cells at
an interface that overlaps. This is an important feature for the creation of
a flux that occurs between the two cells which will be discussed later in this
section. An example of how the discretized domain is represented is shown
in Figure 1.

D
k 1 k k+1

Figure 1: 1D discretization of a domain into three elements

The global true solution u is then first equated to the computational
solution and then broken up into each cell such that

u(x, t) ' uh(x, t) =
K⊕
k=1

ukh(x, t) (2)

where there is now a state for each cell that combines into an approximation
with the global state. A high order local basis function is then applied to
each cell’s state in order to create a nodal state
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ukh(x, t) =
N∑
j=0

ũkj (t)b
k
j (x) (3)

The residual Rh is then created and with this method it has to vanish for
each cell in a Galerkin sense where the basis function forms the weighting
function. This is how this method differs from a traditional Galerkin FE
method where the residual vanishes globally. This is also what allows the
method to be more open to a parallelization which will be discussed later.

x ∈ Dk : Rk
h(x, t) =

∂ukh
∂t

+
∂fkh
∂x

(4)∫
Dk
bkjRhdx = 0 j = 0, ........, N (5)

Here N is the order of the polynomial and for the one dimensional test case
the number of points per cell is equal to one more than the order (Np = N+1)
.

With the distinction that each cell is unique the boundaries of each cell
can have multiple solutions depending on which cell is being examined which
leads to Figure 2.

D
k 1

D
k

D
k+1

Figure 2: Cells having different boundary values

They can then communicate between cells through a numerical flux func-
tion which in terms of CFD is physics based with examples of Lax-Friedrichs
or AUSM+.

With the cells decoupled the original function was then solved by an
integration by parts using the divergence theorem to obtain∫

Dk
bki
∂ukh
∂t

dx+

∫
Dk
bki
∂fkh
∂x

dx = 0 (6)
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∫
Dk
bki
∂ukh
∂t

dx+

∫
∂Dk

∂

∂x

(
bki f

k
h

)
dx−

∫
Dk

∂bki
∂x

fkhdx = 0 (7)∫
Dk
bki
∂ukh
∂t

dx+

∮
∂Dk

bki f
k
hn

k
xds−

∫
Dk

∂bki
∂x

fkhdx = 0 (8)

where nkx is the element normal. Now even though the cells are independent
of each other there is still a piecewise continuous element of the solution
concerning the flux. As previously mentioned this is a problem because all
the cells needs to be discontinuous. By using the previously mentioned flux
function the previous equation now allows for the discontinuity at the cell
edge.

x ∈ ∂Dk : fkhn
k
x → f ∗

(
uk,−h , uk,+h ;nk,−x

)
(9)

The flux is designed such that the flux coming from one cell is equal to the
negative of the flux leaving the adjacent cell at the same boundary.

f ∗
(
uk,−h , uk,+h ;nk,−x

)
= −f ∗

(
uk,+h , uk,−h ;nk,+x

)
(10)∫

Dk
bki
∂ukh
∂t

dx+

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds−

∫
Dk

∂bki
∂x

fkhdx = 0 (11)

This gives Np ∗ K unknowns and equations which can be solved cell by
cell. Here lies the main question of the DG method which is to find ukh ∈ PN
such that bi ∈ PN . Where PN stands for a function space on the standard
interval of order less than or equal to N and vanishes everywhere else. This
leads to a need for a strong basis function.

3.1 Polynomials for Cells

3.1.1 Cell Mapping

An important aspect of a Galerkin model is a strong basis function to work
with. Polynomials are widely used here because of their relative simplicity
over Fourier modes. There is an exception in the case of spectral methods
due to Fourier models providing a simpler model to work with. They also
follow closely with how people tend to think about data in the first place. A
standard interval, x → ξ ∈ (−1, 1), is used to develop a mapping function
which can be extrapolated to any standard cartesian cell.

x ∈ Dk : x =Mk(ξ) (12)
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Mk(ξ) = xka +
1 + ξ

2

(
xkb − xka

)
(13)

3.2 Basis Functions

The basis functions were correlated with the state such that

ukh(ξ) =
N∑
m=0

ũkmπm(ξ) =
N∑
n=0

ûkn`n(ξ) (14)

Where ũkj corresponds to the modal state and ûkj the nodal state. This
is particularly useful because both nodal and modal analysis have different
strengths for analysis. This ability to move between the two gives this method
another advantage over traditional FV methods.

3.2.1 Modal Analysis

A traditional thought in the creation of a modal analysis is the development
of a monomial based on the given polynomial order to set the basis function.
Then using an L2-projection to recover the state ũkm leads to

Mũ = u (15)

The problem is that this system fails due to the matrix M being very poorly
conditioned and thus the modal state cannot be recovered from an inverse of
M . This led to the idea of using a L2 based Gram-Schmidt orthogonalization
in order to develop a basis that was orthonormal.√

βm+1πm+1(ξ) = (ξ − αm)πm(ξ)−
√
βm−1πm−1(ξ)

π−1
.
= 0, π0

.
= 1/

√
β0

(16)

This resulted in the choice of the Legendre polynomials which is found by
selecting certain values for αm and βm. The Legendre coefficients are listed
as

αm = 0, βm =

{
2 if m = 0
1/(4−m−2) if m ≥ 1

(17)

An important property of these legendre polynomials is that∫ 1

−1
πi(ξ)πj(ξ)dξ = δij

.
=

{
1 if i = j
0 if i 6= j

(18)
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A modal basis is not as useful though in a direct analysis of the data due
to the extra calculations that will need to be undertaken to translate the
boundary conditions and initial conditions to a modal system. It is though
a great system that works well for the development of the sensor which will
be detailed later. A transformation matrix is used to move between nodal
and modal values for the state.

3.2.2 Nodal Analysis

An ideal nodal basis function is the Lagrange equation due to it guarantee-
ing nodal accuracy for any quadrature which could be used. The Lagrange
polynomial is created through

`h(ξ) =
N∏

i=0,i 6=n

ξ − ξi
ξn − ξi

(19)

and contains the following powerful property

`j(ξi) = δij
.
=

{
1 if i = j
0 if i 6= j

(20)

With a powerful nodal representation the quadrature needs to be es-
tablished based around the Legendre polynomials needs. This leads to the
Legendre-Gauss-Lobatto quadrature detailed below.

3.2.3 Numerical Quadrature

Quadrature is an important decision in the development of any numerical
technique. This especially holds true if one wants to perform numerical inte-
gration which is based on the distribution of the quadrature and is performed
as follows. ∫ 1

−1
f(ξ)dξ '

Np∑
j=1

ωjf(ξj) (21)

Here ωj represents the weights associated with a particular quadrature Since
a nodal basis has been already chosen for the development of this method
Gaussian quadrature seems the most logical due it being an exact integration
technique for polynomials.
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In the development of this method the Gauss-Lobatto rule was applied
since the Gauss rule does not include the boundary points thus a Jacobi-
Lobato matrix was created.

JLp+2
.
=

[
Jp+1

√
β∗p+1~ep+1√

β∗p+1~e
T
p+1 α∗p+1

]
(22)

where Jp represents the Jacobi matrix

Jp
.
=


α0

√
β1 . . . . . . 0√

β1 α1

√
β2 . . . 0

. . . . . . . . . . . . 0

0 . . . . . .
√
βp−1 αp−1

 (23)

The orthonormal property of the modal analysis needs to be kept in place so
the application of the legendre values for α and β were used. This leads to the
weights and node locations being found from the eigenvalues and eigenvectors
for the Jacobi-Lobatto matrix where

ξi = λLi , ωi = β0(v
L
(i))

2, i = 0, ..., p+ 1 (24)

here λ represents the eigenvalues and v represent the eigenvectors.
The application of the Lagrange basis to these points that satisfy the

Legendre polynomial is not a problem and thus the two methods now have
a standard quadrature.

3.2.4 Combining the Two Analysis

The transformation matrix between the modal and nodal states was some-
thing needed and was developed through the application of the Lagrange
polynomials to the same points that the Legnedre polynomials were built
around. An example of how these two polynomials look up to a 5th order
can be seen in Figure 3.
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(a) Modal basis with πm(ξ) ∈ PN
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(b) Nodal basis with `n(ξ) ∈ PN

Figure 3: Basis Function of PN

By applying the legendre polynomial as the basis function for ũ it is found
that

u(ξi) =

Np∑
m=1

ũmPm−1(ξi) (25)

Where Pm−1 represents the legendre polynomials which leads to

V ũ = u (26)

where V represents a generalized Vandermonde matrix. Now both the Van-
dermonde matrix and its derivatives can be related to the legendre polyno-
mials and their derivatives such that

Vij
.
= πj(ξi), (Vξ)ij

.
= π′j(ξi) (27)

This helps to create a bridge between Lagrange and Legendre polynomials
so that the state can be altered between a nodal or modal value. This allows
the DG method to take advantage of the unique properties provided by modal
and nodal analysis in the orthonormality of the modal function with the
simplicity of the nodal system.

πj(ξ) =
N∑
i=0

Vij`i(ξ) =
N∑
i=0

(V T )ji`i(ξ) ⇐⇒ `i(ξ) =
N∑
j=0

(V −T )ijπj(ξ) (28)
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uh(ξ) =
N∑
m=0

ũmπm(ξ) =
N∑
n=0

ûn`n(ξ) ⇐⇒
N∑
m=0

Vimũm =
N∑
n=0

δinûn (29)

The Legendre-Gauss-Lobatto quadrature leads to a well-conditioned ma-
trix in the Vandermonde matrix. With the basis established the next step
entails the manipulation of Equation 11 to be of an operator form that can
be solved numerically.

3.3 Operator Form

Returning now to the initial one dimensional problem Equation 1 and its
discretized form∫

Dk
bki
∂ukh
∂t

dx−
∫
Dk

∂bki
∂x

fkhdx+

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds = 0 (30)

In order to solve the problem computationally the discretized form of the
equations needs to be broken down into a matrix form based on the applica-
tion of the basis function to the state. The flux is then broken up the same
way the state is based on the basis function

fkh (x) =
N∑
j=0

f̃kj (t)bkj (x) (31)

The time derivative term is broken down through a coordinate transfor-
mation between x and ξ. This transformation is based on

x ∈ Dk : dx = J kdξ, J k =
xkb − xka

2
(32)

and is then inserted into the time derivative term such that∫
Dk
bki
∂ukh
∂t

dx =

∫
Dk
bki (x)

∂

∂t

(
N∑
j=0

ũkj (t)b
k
j (x)

)
dx

=
N∑
j=0

(∫
Dk
bki (x)bkj (x)dx

)
dũkj
dt

=
N∑
j=0

(∫ 1

−1
bi(ξ)bj(ξ)J kdξ

)
dũkj
dt

= J k

N∑
j=0

Mij

dũkj
dt

(33)
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The same method is then applied to the spatial derivative term in order
to break it down into a derivative matrix which can be applied ot the flux
term ∫

Dk

dbki
dx

fkhdx =

∫
Dk

dbki (x)

dx

(
N∑
j=0

f̃kj b
k
j (x)

)
dx

=
N∑
j=0

(∫
Dk

dbki (x)

dx
bkj (x)dx

)
f̃kj

=
N∑
j=0

(∫ 1

−1

dbi(ξ)

dξ
bj(ξ)dξ

)
f̃kj

=
N∑
j=0

(
ST
)
ij
f̃kj

(34)

The boundary term is trickier in that specific nodes based on faces and
edges have to be used in the application of the flux. This does not encompass
the global flux running through the system.∮

∂Dk
bki f

∗
(
uk,−h , uk,+h ;nk,−x

)
ds

=
[
bki f

∗
(
uk,−h , uk,+h ;nk,−x

)]
xka

+
[
bki f

∗
(
uk,−h , uk,+h ;nk,−x

)]
xkb

= bki (x
k
a)

N∑
m=0

(̃f ∗a )
k

mb
k
m(xka) + bki (x

k
b )

N∑
n=0

(̃f ∗b )
k

nb
k
n(xkb )

=
N∑
m=0

(
bki
(
xka
)
bkm
(
xka
))

(̃f ∗a )
k

m +
N∑
n=0

(
bki
(
xkb
)
bkn
(
xkb
))

(̃f ∗b )
k

n

=
N∑
m=0

(bi(−1)bm(−1)) (̃f ∗a )
k

m +
N∑
n=0

(bi(1)bn(1)) (̃f ∗b )
k

n

=
N∑
m=0

(La)im (̃f ∗a )
k

m +
N∑
n=0

(Lb)in (̃f ∗b )
k

n

(35)

This leads to the original discretized form of the equation going from∫ k

D

bki
∂ukh
∂t

dx−
∫
Dk

∂bki
∂x

fkhdx+

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds = 0 (36)
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to

J k

N∑
j=0

Mij

dũkj
dt
−

N∑
m=0

(
ST
)
ip
f̃kp +

N∑
m=0

(La)im (̃f ∗a )
k

m +
N∑
n=0

(Lb)in (̃f ∗b )
k

n (37)

Where there are now mass, stiffness, and lifting matrices for the development
of the method. This can further be reduced into a matrix vector form.

J kM
dũk

dt
− ST f̃k + La(̃f ∗a )

k
+ La(̃f ∗a )

k
(38)

3.4 Elementwise Operator

As previously mentioned the nodal method has been chosen in this research
due it having an advantage in dealing with boundary data as well as non-
linear flux functions. But, there is no reason not to exploit some of the
greater properties of the modal transformation in its orthonormal basis and
its hierarchal construction.

The ability of the Vandermonde matrix to manipulate the state between
the two basis is a huge advantage in the development of the mass, stiffness,
and lifting matrices. This can be seen in the development of the mass matrix

Mij
.
=

∫ 1

−1
`i(ξ)`j(ξ)dξ

=

∫ 1

−1

N∑
m=0

(
V −T

)
im
πm(ξ)

N∑
n=0

(
V −T

)
jn
πn(ξ)dξ

=
N∑
m=0

N∑
n=0

(
V −T

)
im

(∫ 1

−1
πm(ξ)πn(ξ)dξ

)(
V −1

)
nj

=
N∑
m=0

N∑
n=0

(
V −T

)
im
δmn

(
V −1

)
nj

=
N∑
m=0

N∑
n=0

(
V −T

)
im

(
V −1

)
mj

⇐⇒ M =
(
V V T

)−1

(39)

Then with the fore knowledge that there are recursion-based formulas
for Legendre derivatives, the creation of a derivative matrix can easily be
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accomplished from the derivative of the Jacobi matrices.

Dij
.
= `′i (ξj)

=
N∑
m=0

(
V −T

)
jm
π′m (ξi)

=
N∑
m=0

(
V −T

)
jm

(Vξ)im

=
N∑
m=0

(Vξ)im
(
V −1

)
mj

⇐⇒ D = VξV
−1

(40)

The stiffness matrix for a nodal basis is built by

Sij
.
=

∫ 1

−1
`i(ξ)`

′
j(ξ)dξ ⇐⇒

(
ST
)
ij

.
=

∫ 1

−1
`′j(ξ)`i(ξ)dξ (41)

which when applied to the mass matrix and derivative matrix gives

N∑
n=0

MinDnj =
N∑
n=0

(∫ 1

−1
`i(ξ)`n(ξ)dξ

)
`′j (ξn)

=

∫ 1

−1
`i(ξ)

(
N∑
n=0

`′j (ξn) `n(ξ)

)
dξ

=

∫ 1

−1
`i(ξ)

(
N∑
n=0

(̂
`′j
)
`n(ξ)

)
dξ

=

∫ 1

−1
`i(ξ)`

′
j(ξ)dξ

= Sij ⇐⇒ S = MD

(42)

There is a powerful property here due to the need of the transpose of
the stiffness matrix. By applying the transpose and through manipulation
using the Vandermonde matrix the development of the stiffness matrix can
be found through just the Vandermonde matrix and tis derivatives in the
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necessary directions.

S = MD ⇐⇒ ST = DTMT

=
(
VξV

−1)T (V −TV −1)T
=
(
VξV

−1)T (V −TV −1)
=
(
VξV

−1)T (V V T
)−1

(43)

The development of the lifting Matrices are difficult though because they
have to extrapolate the flux from the edge of a cell to the rest of a cell. The
suffix a and b will be applied ot the Lifting matrices to denote which the cell
walls in any direction.

(La)ij
.
= `i(−1)`j(1) (Lb)

.
= `i(1)`j(1)

= `i (ξ0) `j (ξ0) = `i (ξN) `j (ξN)

= δ0iδ0j = δNiδNj

(44)

The numerical flux is then defined by the same procedure to each cell wall

(f ∗a )kij =
N∑
j=0

(̂f ∗a )
k

j `j(−1) (f ∗b )kij =
N∑
j=0

(̂f ∗b )
k

j `j(1)

=
N∑
j=0

(̂f ∗a )
k

j `j(ξ0) =
N∑
j=0

(̂f ∗b )
k

j `j(ξN)

=
N∑
j=0

(̂f ∗a )
k

j δ0j =
N∑
j=0

(̂f ∗b )
k

j δNj

= (̂f ∗a )
k

0 = (̂f ∗b )
k

N

(45)

This all leads to the combination of the lifting matrices and cell fluxes
such that.

N∑
i=0

(La)ij (̂f ∗a )
k

j =
N∑
i=0

δ0iδ0jδ0j (̂f ∗a )
k

j =
N∑
i=0

δi0(̂f ∗a )
k

0 (46)

La(̂f ∗a )
k

=


1 0 . . . 0
0 0 . . . 0
...

. . .
...

0 . . . 0




(̂f ∗a )
k

0

0
...
0

 = (̂f ∗a )
k

0


1
0
...
0

 = (̂f ∗a )
k

0~e0 (47)
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N∑
i=0

(Lb)ij (̂f ∗b )
k

j =
N∑
i=0

δNiδNjδNj (̂f ∗b )
k

j =
N∑
i=0

δiN (̂f ∗b )
k

N (48)

Lb(̂f ∗b )
k

=


0 0 . . . 0
0 0 . . . 0
...

. . .
...

0 . . . 1




0
0
...

(̂f ∗b )
k

N

 = (̂f ∗b )
k

N


0
0
...
1

 = (̂f ∗b )
k

N~eN (49)

These new matrices are then plugged into the local matrix form in Equa-
tion 38 giving a complete system to create the spatial derivatives for the
problem.

4 Implementation of Euler Equations

For this project the Euler equations were chosen due to the large scale eddies
being the important factors. Therefore the small scale turbulent structures
and the turbulence of the problem is not as important especially since any
structure that needed to be developed can be tripped in the initial condition
with an input to the velocity of some kind instead of by turblence. The
Kelvin-Helmholtz problem is a prime example of this where a sinusoidal
velocity in the y direction is used to cause the instability to emerge in the
jet. The Euler equations are

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (50)

∂ρu

∂t
+
∂ρu2 + p

∂x
+
∂ρuv

∂y
+
∂ρuw

∂z
= 0 (51)

∂ρv

∂t
+
∂ρuv

∂x
+
∂ρv2 + p

∂y
+
∂ρwv

∂z
= 0 (52)

∂ρw

∂t
+
∂ρuw

∂x
+
∂ρvw

∂y
+
∂ρw2 + p

∂z
= 0 (53)

∂E

∂t
+
∂u(E + p)

∂x
+
∂v(E + p)

∂y
+
∂w(E + p)

∂z
= 0 (54)

An assumption is made that the air can be represented as an ideal gas such
that the specific heat leads to γ = Cp/Cv. This assumption also leads to a
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constant ideal gas constant R which will be important for normalization. A
constant γ was chosen of 1.4. This also causes a simple relationship between
the energy of the problem and the pressure, density and velocities.

E =
p

γ − 1
+
ρ

2

(
u2 + v2 + w2

)
(55)

For simpler analysis the state and fluxes can be stored into vectors so
that the Euler equation breaks down into one vector equation

∂u

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0, (56)

Where each vector represents

u =


ρ
ρu
ρv
ρw
E

 , F =


ρu
ρu2 + p
ρuv
ρuw
u(E + p)

 , G =


ρv
ρuv
ρv2 + p
ρvw
v(E + p)

 , H =


ρw
ρuw
ρvw
ρw2 + p
w(E + p)


(57)

A common choice for the flux is the Lax-Friedrichs Flux function but this
is not the best choice especially when working in CFD. The AUSM+-up for
all speeds flux function developed by Meng-Sing Lou[14][15] was chosen due
to its capabilities for both high and low speed flows and its dependence on
the physics of the problem.

4.1 Normalization

The variables for this research were all normalized by standard values. The
assumption of the air being an ideal gas as previously stated allows for the
constant specific heat and gas constants. A reference length was chosen
which depends on the problem. For the shock tube and Kelvin-Helmholtz
instability the length factor can be chosen indiscriminately due to the nature
of the problem, but for the vortex problem this reference length plays great
weight in the development of the vortex bursts initial condition. Thus the
radius core length rc was chosen. Finally a reference speed was chosen as the
speed of sound of stagnant air which is a constant. This led to the major
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variables being nondimensionalized as

x∗ =
x

rc
, y∗ =

y

rc
, z∗ =

z

rc
,

u∗ =
u

a∞
, v∗ =

v

a∞
, w∗ =

w

a∞
,

ρ∗ =
ρ

ρ∞
, p∗ =

p

p∞
, T ∗ =

T

T∞
,

c∗p =
γ

γ − 1
, e∗ =

e

a2∞
Γ∗ =

Γ

Γ0

(58)

After this point the superscript ∗ will be dropped and all variables unless
otherwise specified will be nondimensional.

4.2 AUSM+-up for all speeds

The AUSM flux function family was developed with the goal of building a
better flux function that captures the accuracy of flux differencing methods
with the efficiency of flux vector splitting methods. This method was ad-
vanced substantially in [14][15] becoming first the AUSM+ method and then
the AUSM+-up method. The first improvement gave this flux function the
ability to exactly capture a shock or discontinuity as well as an improve-
ment in accuracy with an easier adaptation to other conservation laws. The
AUSM+-up for all speeds method was then created 10 years later with a goal
that as M → 0 the method provides accurate solutions therefore creating a
function that works for all speeds improving the AUSM+ even further.

For the development of this method the flux is broken up into a convective
and pressure fluxes such that

F = ṁ~ψ + P (59)

where
ψ = (1, u,H)T (60)

Here the left state which corresponds to the state from the left cell will be
upheld by a subscript L and the right state will have a subscript R. The
mach number M is found

ML/R =
uL/R
a1/2

(61)
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where a1/2 represents a common speed of sound found by

a1/2 =
aL + aR

2
(62)

A common speed of sound is very useful because through the use of a com-
mon speed of sound the exact capturing of both shocks and discontinuities
becomes possible.

The Mach number at the interface is represented by a function M(m)

where m represents the order of the function

M±
(1)(M) =

1

2
(M± |M|) (63)

M±
(2)(M) =

1

4
(M± 1)2 (64)

M±
(4)(M) =

{
M±

(1)(M), if |M| ≥ 1,

M±
(2)(M)(1∓ 16βM∓

(2)(M)), otherwise,
(65)

here β represents a constant value. With the Mach functions set the Mach
number at the interface is then found by applying

M1/2 = M+
(4)(ML)−M−

(4)(MR) + Mp (66)

where Mp represents the pressure diffusive terms effects on speed. The pres-
sure diffusive term is represented by

Mp =
Kp

fa
max(1− σM̄2, 0)

pR − pL
ρ1/2a

2
1/2

, ρ1/2 =
ρL + ρR

2
(67)

where fa is a scaling function and Kp and σ are constants. The mean local
mach number (M̄) is found through

M̄2 =
(u2L + u2R)

2a21/2
(68)

Which is then used to find a reference mach number

M2
0 = min

(
1,max

(
M̄2,M2

∞
))
∈ [0, 1] (69)

which gives the scaling function used above

fa(M0) = M0(2−M0) ∈ [0, 1] (70)
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Using the new Mach number at the interface and the common speed of
sound the mass flow rate is found

ṁ1/2 = a1/2M1/2

{
ρL if M1/2 > 0,

ρR otherwise
(71)

The pressure term at the interface is then found by use of a P(n) function
which is of varying degree n like the Mach function previously.

P±
(5) =

{
1
M

M±
(1) if |M| ≥ 1,

M±
(2)[(±2−M)∓ 16αMM∓

2 ] otherwise
(72)

where α is a function based on the scaling function fa. This function is then
used to develop the new pressure term for the function where

p1/2 = P+
(5)(ML)pL + P+

(5)(MR)pR − pu (73)

pu represents the velocity diffusion term effecting low velocity flow and is

pu = KuP
+
(5)P

−
(5)(ρL + ρR)(faa1/2)(uR − uL) (74)

here Ku is a user defined constant.
The previous variables α and β are then found through

α =
3

16
(−4 + 5f 2

a ) ∈ [−3

4
,

3

16
],

β =
1

8

(75)

where β is left as a constant and now α has become a function which differs
from the AUSM+ method. Finally the flux is returned as

f1/2 = ṁ1/2

{
~ψL, if ṁ1/2 > 0
~ψR otherwise

+ p1/2 (76)

For supersonic flows the pressure term in the Mach number calculation
and the velocity term in the pressure calculation fall away revealing the
method to be the same as the AUSM+. Therefore the method is only being
adjusted for low speed flows.
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4.3 Integration through time

The DG method allows for a superb method for finding the derivatives in
the spatial direction but the problem remains with integrating these with
respect to time. Before a scheme can be built for this a time step needs to be
established. A reasonable time step is the basis for any numerical calculation.
Here the time step can be found by

∆t ∼ C

(
λmax

N2

h
+ ‖ν‖L∞

N4

h2

)
(77)

where λmax represents the maximum characteristic velocity λmax =
√
γp/ρ+√

u2 + v2 + w2, h is the minimum length, and ν is the maximum applicable
viscosity. The maximum viscosity coefficient is be found by using a simple
relationship where

ν = λmax
h

N2
(78)

With the time step established a system for integrating through time
needs to be found. The most common and useful method for doing this
is through a Runge-Kutta integration. A total variation diminshing (TVD)
Runge-Kutta was used in order to remove any superfluous oscillations caused
by the integration through time. This is a common method of applying the
Runge-Kutta for a more accurate solution.

For this simulation a 3rd order TVD Runge-Kutta integration was used
such that

u(1) = un + ∆tR (un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tR

(
u(1)
)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tR

(
u(2)
) (79)

where R represents du/dt.

4.4 Artificial Viscosity Sensor

The DG method has a large advantage over traditional FV codes due to it
being able to achieve a high order of accuracy. There is a problem though.
Inherent in any high order scheme are oscillations created by the Gibb’s
phenomena. This phenomena can lead to instabilities. Therefore a need is
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found for a scheme to develop artificial viscosity to be used for discontinu-
ities. Traditional finite volume schemes use two different methods for this
implementation. The first is to allow the inherent numerical dissipation of
the problem to remove these problems. This is only applicable to linear first
order systems and are not useful for solving problems. The second is applied
to second order and higher methods which is accomplished by making the
scheme nonlinear. This is done by either applying a limiter to reduce the
order of the simulations so that the inherent numerical dissipation to affect
the solution or by creating an explicit viscosity term based on the state and
applying it. The concept of limiters were dropped in order to allow for a rep-
resentation of the physics to be the base upon which the viscosity is applied.
This is artificial damping.

A simpler way would be use a global viscosity on all cells much like the
inherent dissipation present in lower order methods but this can cause the
erasing of important small scale physics that should not have been affected
if this were a real world experiment. If global viscosity is not useful, other
traditional codes apply a type of limiting [17] where the DG method is scaled
back in certain areas to lower the order of accuracy and insert some of that
numerical dissipation. This is also not a useful method because it lowers
the overall accuracy of the solution for those cells even if the cells are small
enough to capture the ”sharp” features. Therefore a sensor approach is much
more useful in that it senses which cells need to have viscosity applied for
them to function without any reduction in accuracy for those cells. The
current sensor being used was developed by Andreas Klockner [12] as an
extension to DG codes and can be used with the Euler equations. Some
improvements have been made to this code and will be noted below.

The governing equations are listed below where the right hand side con-
tains an artificial viscosity with ν representing the viscosity coefficient of
unknown value.

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ) , (80)

∂t (ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x (ρu)) , (81)

∂tE +∇x · (u (E + p)) = ∇x · (ν∇xE) (82)

In the development of this sensor density was used as the sensing variable
upon but it is a choice of the programmer in selecting which variable to sense
upon. Here q will represent the chosen state.

Once the choice is made the Vandermonde matrix is applied to transform
from a nodal basis into a modal basis. Here q̂ represents the given state after
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having been transformed into a modal form. It is assumed that the decay
can be approximated as

|q̂n| ∼ cn−s (83)

which by taking the logarithm

log|q̂n| ∼ log (c)− s log (n) (84)

gives an algebraic system of equations to solve. The coefficients are found by
a least squares fit through utilization of the normal equations where

ATAx = AT b (85)

A =


1 −log(1)
1 −log(2)
...

...
1 −log(n)

 , b =


log|q̂1|
log|q̂2|

...
log|q̂n|

 , x =

{
log(c)
s

}
(86)

s represents the decay coefficient and is key in determining how much vis-
cosity should be applied to a cell. The problem is this can be misled very
easily by white noise in the data or for a ”kink” where certain modes fall to
zero leading to the data being misinterpreted and giving a very high decay
coefficient value.

To help fix this two different fixes were applied to the modes before the
normal equations were solved. The first fix was by applying skyline pes-
simization which changes the modes so that they follow a monotone mode
profile by eliminating spurious nodes. Skyline pessimization is implemented
such that

qn := max
i∈{min(n,Np−2),...,Np−1}

|q̂i| forn ∈ {1, 2, . . . , Np − 1} (87)

Thus producing a new set of modal coefficients.
The small white noise perturbations are removed by adding a represen-

tation of scale to the model in the form of baseline decay

|b̂n| ∼
1√∑Np−1

i=1
1

n2N

1

nN
(88)

Np−1∑
n=1

|b̂n|2 = 1 (89)
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Which is then added to the original modal array by

|q̃n|2 := |q̂n|2 + ‖qN‖2L2(Dκ)
|b̂n|2 for ∈ {1, . . . , Np − 1} (90)

This addition drowns out the floating point white noise in the system allowing
for only the data to be examined.

With the value of s determined it is noted that an analogy can be shown
between Fourier decay and this modal decay leading to the knowledge that
s ≈ 1 for a discontinuous solution, s = 2 for a C0 solution, s = 3 for a C1

solution, etc. This leads to the artificial viscosity being determined by

ν(s) = ν0


1 s ∈ (−∞, 1) ,
1
2

(1 + sin (− (s− 2) π/2)) s ∈ [1, 3] ,

0 s ∈ (3,∞).

(91)

where ν0 is the maximum viscosity coefficient discussed previously.
Their method only included details up to the second dimension so in

order to use Klöckner’s sensor in three dimensional space some new imple-
mentations had to be added. These changes caused both an increase in the
speed of the sensor by augmenting the process where the inverse Vander-
monde matrix was applied. A change was implemented that moved the two
dimensional application from using the Vandermonde based off of a two di-
mensional system to that based off of a one dimensional system. The state
vector q was split from a vector of Np points to a NfpxNfp matrix allowing
for application of the Vandermonde matrix based off of a one dimensional
system. This was done through a manipulation of pointers in fortran 90.
The norm was also no longer used because as the number of dimensions in-
creased the norm increased and with this increase the norm could buffer out
some of the important data by making the baseline decay normalization too
big. Another problem exists because for some data like, axial velocity in
the burst problem, the norm would go to zero removing a key piece of the
sensor’s development. A ”fix” was made to allow for sensing on this data
and is implemented in Chapter 4.

4.5 Improving the Efficiency of the Code to Increase
its Speed

With all these other implementations two small but major changes were
implemented in order to drastically increase the speed of the code as it was
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developed and moved from one dimension to a three dimensional problem.
These two ideas were the creation of sparse matrices for stiffness and lifting
matrices as well as the implementation of parallelization.

4.5.1 Sparse Matrix

The point of sparse matrix multiplication is to remove any cells that are
zero or roughly equate to zero in terms of double precision for computers.
These matrices had a vast number of points where the stiffness matrix for two
dimensional problems had dimension [N2

fp, N
2
fp] with only N3

fp points having
values. Here Nfp represents the number of points to a edge or Nfp = N + 1.
In terms of numbers this lays out to a 9th order polynomial having a matrix
of 10,000 points but only 1000 points having needed data. This data emerges
into patterns of numbers as seen in the stiffness and lifting matrices in the
figures below.
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Figure 4: Location of all non zero values in stiffness matrices
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Figure 5: Location of all non zero values in lifting matrices

This is also only for two dimenisonal problems, the number of wasted
data points, thus leading to pointless calculations, only grows larger when
applied to three dimensional problems.

Therefore a method had to be and was developed in order to take advan-
tage of this and speed up the code. A module was created in Fortran that
searched the matrix for all pertinent data that resided above a tolerance and
stored that into a new data array. This allowed for a speed up of the code
due to a smaller flop count in the multiplication.

4.6 Parallel Processing

To obtain a faster code parallel processing was implemented such that the
full power of the processor could be achieved. Parallel processing occurs
when a series of loops is compressed and then broken up and sent into a user
defined number of threads in a processor or graphics processing unit. For
these simulations a built in method called openmp was utilized to process
the parallized code. A simple experiment was done in order to determine
the optimal number of threads that should be implemented for the xenon
processor in the workstation used. The data can be seen in the figure below.
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Figure 6: Wall time for utilizing multiple threads for the Isentropic Vortex
Test Case.

This data shows that seven threads gives an optimal solution but this
could also be weighed by the fact that during these simulation the computer
had a user logged into it. Nothing was running but the eighth thread was oc-
cupied with the operating system and running the standard desktop functions
slowing down the system. Therefore if the user is logged in seven threads
is optimal but for use on something like a cluster the maximum number of
threads or 8 will be more optimal.

5 Sensor Improvement

With the substantial cost in terms of time of the burst problem along with
the different improvements made to the artificial viscosity sensor multiple
test cases were run for validation to lead to the full scale problem. Previous
research accomplished at Auburn University by Reitz [19] and Favors [7] pro-
vided insight into some 2D applications. For Reitz it was the implementation
of the 9th order polynomials as well as the importance of domain size being
most favorable for speed and accuracy while Favor’s thesis showed some of
the benefits that comes with the Klöckner sensor used here versus an entropy
physics based model.
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5.1 Test Cases

For the development of the system two separate two dimensional test cases as
well as a three dimensional test case were examined with the sensor. These
cases are a shock tube adjusted to two dimensional space and the Kelvin-
Helmholtz phenomena. Then before the implementation of the full three
dimensional problem the shock tube was extrapolated to three dimensions to
validate the changes that were made to the sensor as well as work with some
new changes specifically in how the baseline decay is applied.

5.1.1 Kelvin-Helmholtz

The Kelvin Helmholtz phenomena was used as a simple 2D model in order
to validate the changes as well as show an increase in the speed of the new
implementation of the sensor. Another advantage to using this as a check, is
that the Kelvin-Helmholtz phenomena is a naturally occurring phenomena
that can occur in wakes giving one more example of the DG method modeling
wake flow components. This test case also gives a special situation where
the sensor can be checked against numerical instabilities that are developed
through time and are not abrupt like a shock is.

In creating the initial state U constant values are assumed for ρ = 1 and
p = 1/γ. Constants ε = π/15, δ = 0.1/4.9, and M = 0.25 are used in the
development of the velocity profile for the system which is found through

s =

 tanh
(

3π/2−y
ε

)
, y > π

tanh
(
y−π/2
ε

)
, else

(92)

u = 0.5 (s+ 1) M
v = Mδ (1. sin (1. x/3.)− 1. sin (2. x/3.) + 1. sin (3. x/3.))

(93)

The vertical velocity here is developed with the purpose of perturbing the
first three modes to allow for consistently reproducible simulations in order
to compare results back and forth. A fifth state is added to the governing
equation concerning the concentration factor s. This state is used both in
the sensor and in the plotting of the initial conditions as seen in Figure 7.
This allows for an easy comparison to other codes and experiments. The
bounds for this problem are x ∈ [0, 4π] and y ∈ [−π, 3π].
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Figure 7: Initial condition showing the concentration s

5.1.2 Sod Shock Tube

The burst problem also deals with a direct shock like discontinuity when the
vortices core radius changes due to the burst. Therefore an examination of a
shock tube provides ample benefits in how the sensor handles such an abrupt
change in the state. A shock tube is established in experiments by creating
a cylinder with two different states for pressure and density on either side
of a burst disk. At time t=0 the burst disk is then popped and the gases
mix sending a shock wave and other cascading effects through the system.
This problem from a CFD sense is a simple one dimensional problem that
can easily be extrapolated to three dimensional space.

The problem here examines the common test case of the Sod shock tube
and is set up for multiple dimensions by choosing a single direction and then
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declaring the location of the burst disk between the two ends of the domain
to exist in this direction. For this simulation a bounds of [−1, 1] for both x
and y. The computational burst disk was placed at 0 which is the center.
The values on either side are

ρ =

{
1. x ≤ 0.
0.125 x > 0.

(94)

p =

{
1. x ≤ 0.
0.1 x > 0.

(95)

and an image of the initial condition can be found in Figure 8.
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Figure 8: Initial Condition of density (ρ)

With the sensor fully validated the shock tube was then expanded into
three dimensions in order to troubleshoot as well as develop the extrapolation
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of the sensor into three dimensional space. The same format for the develop-
ment of the initial condition was followed for converting the two dimensional
shock tube to a three dimensional shock tube.

5.2 Results for Sensor Validation

5.2.1 Sensor Validation in Two Dimensions

The modal sensor is a very useful tool, but for an optimal use in three di-
mensions it needs to be retooled to increase it’s speed. This is an important
concept when running three dimensional simulations which are already very
costly concerning time. Before moving into the three dimensional problems,
the sensor was first altered in the two dimensional space in order to trou-
bleshoot as well as see if it altered the sensor’s abilities. These changes can
be found in algorithms 1 and 2. Here the original algorithm, algorithm 1,
has a matrix multiplication that costs N4

fp flops. This is due to it involving
a matrix multiplication of a N2

fpxN
2
fp matrix to a Nfpx1. The method is

altered by using the inverse of the Vandermonde matrix based off of a one
dimensional system instead of the current two dimension system. This Van-
dermonde matrix was then applied by matrix multiplication in the x or y
direction while looping through all the nodes. This resulted in 2 NfpxNfp by
Nfpx1 calculations inside of a loop over Nfp creating a flop count of 2 ∗N3

fp

for the two dimensional case. For the 3D case the savings are bolstered even
higher. This case used to cost flops on the order of N6

fp but with the use of
the smaller Vandermonde matrix it only costs 3 ∗N4

fp flops. This translates
to a savings in two dimensional of Nfp/2 and savings in three dimensional
space of N2

fp/3 flops which shows exponential savings between the two cases.
With proof that the sensor provides a substantial increase in the speed

of the simulation the validity of the new application of the modal sensor
was checked using the Kelvin-Helmholtz problem. This was done to prove
the modes were still the same. The kinetic energy in the Kelvin-Helmholtz
instability is a constant. Therefore the kinetic energy was integrated using
the gauss-lobatto quadrature and then was normalized by the initial kinetic
energy. This was plotted in Figure 9. Global viscosity, or the application of
viscosity to all locations, was also plotted to show how much more effective
using a sensor is. The figure shows both the new approach and old approach
giving an identical integrated kinetic energy over time while providing leaps
and bounds better results than a global viscosity method proving the validity
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of the sensor while also showing how it obtains similar results.
The sensor was then compared as it activated in both x and y direction

as seen in Figures 10 through 13. As can be seen in the figures the sensor
turned on in the same spots with the exact same weight for both the new and
old implementations which aligns with information found in Figure 9. This
all logically follows since the modes are the same regardless of the method
for finding them.
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Figure 9: Total kinetic energy over time
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Figure 10: Sensor in X Direction at time 49.49 s
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Figure 11: Sensor in Y Direction at time 49.49 s
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Figure 12: Sensor in X Direction at time 76.99 s
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Figure 13: Sensor in Y Direction at time 76.99 s
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(a) Kelvin-Helmholtz New (b) Kelvin Helmholtz Old

Figure 14: Comparison of the two states at time 76.99 s

With validation that the new implementation returns the same amount
of artificial viscosity for both implementations a cost comparison was done
by utilizing both the Sod shock tube and the Kelvin-Helmholtz phenomena.
Tables 1-3 show the new implementation of the sensor saves time for each
case. In each of these tables the total time for running each simulation is
what is recorded. Tables 2 and 3 also compare an increase in the order of
the polynomial and how that affects the new method. For each fo the sod
shock tube test cases a constant ∆t was used in order to compare the results
for the varying polynomial order. For the data stored in Table 2 the ∆t was
0.00005 and for Table 3 it was 0.0002. For the Kelvin-Helmholtz there is
a 4.0858% savings in time while for the Sod shock tube there is a 3.9611%
savings in wall clock time for a ninth order polynomial. This shows a decrease
in time but questions remain due to the small difference when comparing the
sensor for the test cases of table 2. Based on polynomial order the decrease
in time varies from 5.318 s. Therefore with the domain specifications of
Ni = 99Nj = 1 the order of the polynomial was increased in order to judge
whether or not the method did allow for more savings as polynomial order
increased. For the tenth order polynomial the savings amounted to 7.278 s or
5.10 %, the eleventh order polynomial is 11.015 s or 6.24 %, the twelfth order
polynomial is 15.873 s or 7.83 %, and the thirteenth order polynomial gives
22.17 s or 9.06 % in savings. This proves that as the order of the polynomial
is increased the savings also increase. Since the sensor is implemented for
each cell and the new implementation saves on the order of Nfp/2 flops per

Auburn University
42



iteration the number of cells was increased to Ni = 50NJ = 50 in order to
see how substantial the savings can be for more realistic two dimensional
meshes.

The results for these new runs can be seen in Table 3. Here there is a
savings in time of 14.256 s or 2.20% for the ninth order polynomial, 30.507 s
or 3.79 % for the tenth order polynomial, 41.649 s or 4.09 % for the eleventh
order polynomial, 68.24 s or 5.58 %for the twelfth order polynomial, and
96.433 s or 6.31 % for the thirteenth order polynomial. This proves the
trend found in the previous shock tube experiment where as the order of
the polynomial is increased there are more savings from the augmentation to
the sensor. The decrease in the percentage of time can be attributed to the
increase in mesh size and the sensor not being the most costly part of the
simulations.

Algorithm 1 Old Sensor Implementation

1: for i = 1, Ni do
2: for j = 1, Nj do
3: Q = U(:, 5, i, j)/U(:, 1, i, j)
4: Q = abs(matmul(invV,Q(:, 1)) + 1.0e− 17) . N4

fp flops
5: for iii = 1, Nfp do
6: qx(iii) = sqrt(sum(Q(Kcell(:, iii), 1) ∗ ∗2.))
7: qy(iii) = sqrt(sum(Q(Kcell(iii, :), 1) ∗ ∗2.))
8: end for

9:
...

10: end for
11: end for
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Algorithm 2 New Sensor Implementation

1: for i = 1, Ni do
2: for j = 1, Nj do
3: call wrapper(din, U, uhat)
4: um = apply-along-all(din, invV 1D, uhat) . 2 ∗N3

fp Flops
5: um = um ∗ um
6: qx1 = sqrt(sum(um, 2))
7: qy1 = sqrt(sum(um, 1))

8:
...

9: end for
10: end for

Sensor Implementation Wall Clock Time
New Method 545.3109 s
Old Method 568.5409 s

Table 1: Kelvin Helmholtz, N=9, Ni=27, Nj=18

Wall Clock Time
Sensor N=9 N=10 N=11 N=12 N=13

New Method 107.232 s 135.144 s 165.39 s 204.752 s 222.661 s
Old Method 112.55 s 142.422 s 176.405 s 220.393 s 243.831 s

Table 2: Sod Shock Tube, Ni=99, Nj=1

Wall Clock Time
Sensor N=9 N=10 N=11 N=12 N=13

New Method 634.739 s 775.489 s 977.014 s 1154.97 s 1431.889 s
Old Method 648.995 s 805.996 s 1018.663 s 1223.21 s 1528.322 s

Table 3: Sod Shock Tube, Ni=50, Nj=50
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5.2.2 Implementation into Three Dimensions

With both the validity of the new approach to the modal sensor proven as
well as the savings shown to be substantial, the next step was to extrapolate
the sensor into three dimensional space. When applying the sensor to the
vortex bursting problem the sensor repeatedly failed due to it not activating
fast enough on the data. Both density and energy were sensed to no avail.
Therefore the sensor was further augmented to look for the highest value over
all the states and apply that to the relative cell in all 3 directions. A problem
emerges when applying this method though due to the norm for the state ρw
will be zero, therefore the sensor may turn on due to the inherent floating
point noise. This can ” wash out” important aspects fo the physics of the
problem. This meant that a new method for finding the stabilizing factor
was needed for the application of the baseline decay to make the sensor more
robust on all states even if it removed some of the simplicity of the sensor.
To validate this new approach the Sod shock tube was returned to due to its
simplicity as well as the speed with which the problem can be run.

The exact, analytical answers for the Sod shock tube problem were found
from a NASA website[20] and used to tabulate RMS errors for each simu-
lation. The new scale for the norm was originally developed as something
manually entered by the user for the simulations. For these simulations
represented in Figures 15-17 the norm for each state can be found in the
following vector ynorm = [3.0, 0.005, 0.005, 0.005, 5.0]. The values for states
two through four were chosen in order to see the level of impact the velocity
would have. The values for the first and fifth state were chosen to be close
to their norm values for a one dimensional case.

Returning to the problem the test cases were run with an activation just
on density and then on all states in order to provide a good comparison of
the data. Table 4 shows for both cases an RMS error of less than 0.02 was
found. Figure 18 shows that by sensing on the whole state the results are
increasingly smoothed over just sensing on one state due to the increase in
the activation of the sensor. This can be further seen from Figures 15-17
which depicts a comparison of the sensor being turned on through time as
the shock is propagated in any of the three directions. Image (b) in each of
the Figures shows that the sensor actively tracks just the shock and keeps
a good marker on it when just sensing on density while Image (a) in the
Figures shows a more liberal application of the viscosity over a wider range
of data.
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Values Sensed On RMS Error
Sense on ρ 0.0078

Sense on all states 0.0142

Table 4: RMS Error for Sod Shock Tube 3D
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Figure 15: Sensor through time X
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Figure 16: Sensor through time Y
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Figure 17: Sensor through time Z
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Figure 18: Comparison of Sensor using all states or one
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Figure 19: Zoomed in comparison of the baseline decay variation

As previously stated these simulations were all done with a predetermined
scale of ynorm = [3.0, 0.005, 0.005, 0.005, 5.0]. This raised a question though
of whether or not this was the best choice. The simulation was then rerun
with a new scale of ynorm = [3.0, 0.5, 0.5, 0.5, 5.0]. A comparison of the shock
tube sensing on all five state can be seen in Figure 20. These images show
the sensor being activated much more sparsely due to the higher value on
the scale for the velocity states. This follows the logic of the scale being used
to balance the baseline decay to remove floating point noise. The lower the
value for the norm the higher chance there is for noise to affect the sensor.
Table 5 validates the previous reasoning by showing a much smaller RMS
value for the new implementation of the scale versus the old one and being
much more in line with RMS value for the sensor only utilizing density.
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Figure 20: Comparison of different preselected weighting vectors

Values Sensed On RMS Error
Velocity norm 0.005 0.0142
Velocity norm 0.5 0.0088

Table 5: RMS Error for Sod Shock Tube 3D

All this bears the question of how to derive a system to accurately pre-
determine values for this new scale. As shown when discussing the sensor a
value for s of 1 or lower leads to the maximum application of artificial viscos-
ity. Whereas a value for s of 3 lead to the least amount of artificial viscosity
applied. Any values of s over 3 causes no artificial viscosity to be applied.
The question is then posed that for basic phenomena such as floating point
noise or a step function what is the maximum value that can be used to trip
the sensor for either of these situations.

The previous method for deriving the scale was also found to cause dif-
ferent values for a step function based at 0 and a step function based at any
other height. In order to incorporate this the step function to be used will
be based at one. In order to determine this the first thing that was done
was to choose a set of s values to examine. For this research the values of
s = [1, 2, 3] were chosen. Then three separate polynomial orders were chosen
to be used as a framework for the solution. The polynomial orders chosen
were x = [5, 9, 15]. Initial guesses were found for these polynomial orders in
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order to obtain the desired s value. These values can be seen in Equation 96
where the rows correspond to the distinct s values and the columns to the
polynomial orders.

y =

0.0034 0.012 0.066
0.019 0.22 6.6
0.071 1.72 180

 (96)

With the initial conditions built a MATLAB script was run that created
an initial guess by utilizing this data and an intrinsic interpolation function in
MATLAB. Then a minimizing function was used called FZERO. The function
being fed to FZERO would take the polynomial order and determine an initial
condition based off of the desired test case and then run the sensor on it.
With the value of s obtained the function would then determine the cost
function with sdesired − ssensor. The system would continually run until it
achieved an s value within a tolerance to the desired value. These values for
both the step function as well as noise can be seen below in Figures 21 and 22.
In these figure’s the average value needed to activate the sensor was divided
by the amplitude to allow for an easy application to different problems.
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Figure 21: The minimum necessary normalized average to trip a specific s
value for noise
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Figure 22: The minimum necessary normalized average to trip a specific s
value for a step function

As previously stated a standard polynomial order of 9 was used. The
values for a 9th order polynomial fall in Tables 6. In order to prevent the
sensor from turning on too much an average of the values for s = 2 for Noise
and s = 3 for the step were used. This average could then by multiplied by
the amplitude of the desired state in order .
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s Noise Step
1 11.844 0.83421
2 217.75 15.425
3 1717.9 121.47

Table 6: s values for 9th order polynomials

The shock tube was then rerun with these new scales to determine their
accuracy. Figure 23 and Table 7 show that the new RMS error as well as a
plot of the new density are nearly identical to the values previously decided
upon. These show that the new scale function will provide a good result
while removing any guess work previously being utilized. This is a huge
improvement in that the sensor is more applicable to any type of state at a
relatively small cost of being now based on the order of the polynomial while
still retaining it’s independence of the problem which many other sensors
struggle with.
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Figure 23: Using the new scale derivation to replace ynorm

Values Sensed On RMS Error
Utilizing built in scale 0.0093

Velocity norm 0.5 0.0088

Table 7: RMS Error for Sod Shock Tube 3D
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6 Three Dimensional Vortex Problems

6.1 Generation of the Initial Condition

The burst vortex is a complicated problem when generating the initial con-
dition. It requires pseudo steady state simulations as well as extrusions for
a two dimensional vortex into a three dimensional field.

6.2 Velocity Profile

In order to establish the real world application of the bursting an accurate
representation of the velocity profile needs to be made. For this problem a
Gaussian vortex velocity profile was chosen that is developed as

vθ =
Γ0

2πr

(
1− e−β(r/rc)

2
)

(97)

where Figure 24 shows the non-dimensional velocity profiles for the two vor-
tices with cores sizes of rc1 = 2.6 and rc2 = 5.2.
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Figure 24: vθ for the vortices of two different core sizes

With the velocity profile built in radial coordinates it then had to be
shifted to Cartesian coordinates. This was done by first transforming the
velocity equation into a velocity potential equation by

f =
vθ
r

(98)

There is a problem with the profile though. At the center r = 0 the
current velocity profile would reach a singularity, therefore a high order alge-
braic model was used only at r = 0. The velocity potential for all radii can
then be found from

c =
Γ0

2πa
(99)
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f =


c
rc1

(
(r/rc)

2+2γ

((r/rc)2+γ)
2

)
c

rc1(r/rc1)
2

(
1.0− e−β(r/rc)2

) (100)

where Γ0 represents the circulation.

6.3 Boundary Condition

With a velocity profile the boundary conditions then had to be developed.
This way the pseduo-steady state simulations could be run for the two di-
mensional slices. This was done with symmetric boundary conditions in the
transverse directions[22]. These are applied by imagining a ghost set of do-
mains surrounding the vortex and each ”ghost” domain bears a reflection of
the vortex. This reflection is captured in rings around the current domain.
Each ring contains more reflections of the domain due to a larger radius away
from the original domain but, the further out the ring is the less the velocity
of this ”ghost” domain influences the development of the velocity profile.
The symmetric boundary condition allows no velocity to cross its boundaries
therefore the domain of the problem is of the utmost importance.
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Figure 25: Example of Symmetric Boundary Condition on a Vortex

For this problem 25 rings were generated and then a Van Wijngaarden
transformation was used in order to accelerate the series and find a more exact
solution for the velocity than simply doing a summation. This is performed
by first performing an Euler’s transform which is accomplished by doing a
summation of the array in question

s0,k =
k∑

n=0

(−1)nan (101)

here s is a matrix of data for computing the Euler’s transformation. The
velocity summations are then stored in the top row of data of s at which
point the Euler’s transformation is performed where

sj+1,k =
sj,k + sj,k+1

2
(102)

Van Wijngaarden’s contribution lay in noticing that it was pointless to takes
this all the way to the end of the data. Rather by stopping two-thirds
of the way through the transformation a more accurate value for the true
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summation was found. This contribution allowed for less rings to be used
while obtaining much more accurate results for the velocity.

6.4 Two Dimensional Initial Condition

While the velocity field is well represented and the boundary conditions have
been derived, there is no simple way to derive the pressure and density from
the velocity. These values are intrinsically linked in the Euler equations. This
led to a need to develop a pseudo-steady two dimensional initialization algo-
rithm. This is accomplished by creating a standard flow field with uniform
density and pressure with no velocity and then slowly introducing the true
velocity field over a period of time and then running the simulation till the
residual reaches three orders of magnitude below it’s peak to show a steady
state solution.

The introduction of the velocity is done through a factor based on a
cosine function going from zero to one. After a certain set time that factor
stays at one so that the initial condition can come to a constant value. This
introduction equation is

s = cos

(
t

100
∗ π

2
− π

2

)
(103)

so at a time of one hundred seconds the value for s remains at one.
To achieve the introduction of the velocity slowly into the right hand side

of the solution is as follows.

rhs (:, 2) = rhs (:, 2) +
s

τ
∗
(
U (:, 1, i, j) ∗

(
ut (:, 1, i, j)− U (:, 2, i, j)

U (:, 1, i, j)

))
(104)

rhs (:, 3) = rhs (:, 3) +
s

τ
∗
(
U (:, 1, i, j) ∗

(
vt (:, 1, i, j)− U (:, 3, i, j)

U (:, 1, i, j)

))
(105)

rhs (:, 4) = rhs (:, 4) +
s

τ
∗
(
U (:, 2, i, j) ∗

(
ut (:, 1, i, j)− U (:, 2, i, j)

U (:, 1, i, j)

))
+
s

τ
∗
(
U (:, 3, i, j) ∗

(
vt (:, 1, i, j)− U (:, 3, i, j)

U (:, 1, i, j)

))
(106)

Here i and j corresponds to the cells in the x and y direction, τ is a constant
held to one half here so that there is more weight on the velocity inclusion,
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and ut and vt represent the true velocities in the x and y direction respectively
This

6.5 Three Dimensional Extrusion

The two two dimensional vortices were then generated with the differing core
radii previously mentioned. The ratio of the two core radii was altered in
the exponential term of Equation 100. This way the strength of the vortex
was unaffected by the changing core radius allowing for the circulation to
be accurately maintained and the vortices to be merged. With the two
dimensional initial conditions made all that was left was the generation of
the three dimensional model.

The two dimensional slices were merged by using a sinusoid function
going from [1,−1] for 5. < z. < 10. and [−1, 1] for 45. < z < 50.. This is
represented by the function theta and can be seen below.

U =


Urc2 z < 5.
θ Urc2 + (1− θ)Urc1 5. < z < 10.
Urc1 10. < z < 45.
θ Urc2 + (1− θ)Urc1 45. < z < 50.
Urc2 z > 50.

(107)

θ =

{
1
2

+ 1
2

sin (−π/5 z + 3π/2) 5. < z < 10.
1
2

+ 1
2

sin (π/5 z − 19π/2) 45. < z < 50.
(108)

This generates the initial condition. The velocity in the transverse di-
rections was then perturbed using a random perturbation applied as u =
ubase (1 + εũ) where ε = 1x10−2 and ||ũ|| ≤ 1. This trips the helical insta-
bility in the problem. The boundary condition for the axial direction of the
vortex bursting problem was also a symmetric boundary condition which due
to the velocity being independent of z is more like a reflecting wall boundary
condition.

6.6 Results

The CFL number plays a huge role in the development of the time step for
all CFD applications. For the two dimensional cases this CFL number can
approach one for most problems but this is not the case for three dimensional
problems. In order to determine the appropriate CFL number, the number
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was varied and the three separate test cases were run. These test cases had
varying CFL numbers of CFL = [0.25, 0.3, 0.35] with a grid size of 20x20x20.
The simulation corresponding to the CFL number of 0.35 failed, therefore to
keep the code running as fast as possible the CFL number was established
at 0.3.

The minimum pressure is plotted for varying grid sizes and polynomial
order in Figures 26-31. The plots show that the burst follows the same
path as the vortex bursting pressure field found in Figure 32 [16]. These
figures all show a constant velocity in the pressure wave collapsing into each
other. In order to compare the time the normalization was shifted in post
processing by a conversion factor of vθmax/(2aπ). The burst is identified by
the sharp increase in pressure as seen in each of the Figures and is found
at a constant location. This lines up with the results in the Moet et. al.
paper where they found that a constant propagation speed existed for all
the test cases and the burst occurs at an exact time based off the ratio
of the core radii. There is a difference in the amplitude of the pressure
waves but this is understandable due to the difference in the normalization
techniques. This project was normalized by utilizing the dynamic pressure
as the normalization factor where the Moet paper uses.

p∗ =
p− pmin
p∞ − pmin

(109)

The grid size and polynomial order where varied in order to find the
most accurate solution and see how each change impacts the solution. The
Figures show that the amount of cells in the axial direction do not have a large
influence on the pressure wave. Instead the transverse cells hold the most
influence. This is logical because since this plot is based on the minimum
pressure and plotted along the axial direction. A very interesting note is that
even though the 13th order polynomial used less cells and degrees of freedom
it obtained an equally accurate version of the solution when compared to the
paper by Moet et. al. The downside to the this implementation was in the
time needed to run the solution. Even though it had the least degree’s of
freedom the solution took the longest to run.
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Figure 26: Plot of the minimum pressure evolving through time for a poly-
nomial of the 9th order with a grid Ni=Nj=20 and Nk=25
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Figure 27: Plot of the minimum pressure evolving through time for a poly-
nomial of the 9th order with a grid Ni=Nj=25 and Nk=30

Figure 28: Plot of the minimum pressure evolving through time for a poly-
nomial of the 9th order with a grid Ni=Nj=25 and Nk=35
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Figure 29: Plot of the minimum pressure evolving through time for a poly-
nomial of the 9th order with a grid Ni=Nj=25 and Nk=40

Figure 30: Plot of the minimum pressure evolving through time for a poly-
nomial of the 9th order with a grid Ni=Nj=25 and Nk=45
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Figure 31: Plot of the minimum pressure evolving through time for a poly-
nomial of the 13th order with a grid size of Ni=Nj=17 and Nk=25

Figure 32: Temporal evolution of the profile of minimum pressure in the
vortex core for simulation DNS2[16]

Since the pressure plot had poor quality when the transverse number of
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cells was below 25 in each direction the vorticity for those solutions was not
plotted. The vorticity magnitude is then plotted for each of the remaining
cases in Figures 33-37. They are listed with their time being changed to the
scale of the paper to allow for better comparisons. Due to the time step
being derived by the simulation the times for each figure could not perfectly
match but the physics still shows the same situations occurring in comparison
to Figure 38. Image (c) for all figures shows the initial burst as the two
pressure waves meet in the middle of the simulation. This show the core
radius expanding at the point of impact. Image (d) for all the simulations
then show the beginning of the helical instability. This shows that the sensor
allowed for the natural creation of the instability without overpowering it.
As the number of cells are increased in the z direction the instability becomes
more clear as can be seen from Figures 35 and 36 when compared to Figures
33, 34, and 37. The increased polynomial order did not show the helical
instability as quick as the other examples due to a lower resolution in the z
direction. While image(e) in the figures all show the burst cloud becoming
its own entity in the center of the simulations. The helical instability can
easily be seen in the (e) image for all the figures.

This has all been based on a visual inspection therefore a more quantifi-
able method was used to back up the analysis from the figures. Since this is
a problem based on the Euler Equations and the boundary conditions have
no flow passing through them the total kinetic energy should be a constant
throughout time. Since artificial viscosity is being applied this will not hold
true completely and therefore if too much viscosity is added the quality of
the solution decreases and it can be tracked. Figures 39 and 40 show the
total kinetic energy of the problem either normalized by the kinetic energy
of the initial condition or the error when compared to the initial condition.
These figures both show that there is only small incremental improvement
with the increase of cells in the axial direction which with the increase in
the time required for simulation makes a solution with around forty cells in
the axial direction seeming to be most optimal. The best error was shown to
occur on the increase in both the axial and radial cells which lines up with
the other charts.

These vorticity magnitudes and kinetic energy plots show that this robust
adaptation of the sensor was able to approximate the same viscous physics
effects as both a sixth order LES and DNS simulations without requiring the
solving of the RANS equations and therefore without the need to utilize a
turbulence model. These figures also show that increasing the axial resolution
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has only a slight effect in the decrease of the error. This shows the superior
results to be for the 9th order polynomial with a grid of Ni = Nj = 28, Nk =
40 because it is not only the most accurate.
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(a) t=0. (b) t=1.9064

(c) t=4.0159 (d) t=4.5286

(e) t=6.3687

Figure 33: Isosurfaces of vorticity magnitude for a polynomial of the 9th order
with a grid Ni=Nj=25 and Nk=30
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(a) t=0. (b) t=1.8384

(c) t=3.8821 (d) t=4.4949

(e) t=6.3687

Figure 34: Isosurfaces of vorticity magnitude for a polynomial of the 9th order
with a grid Ni=Nj=25 and Nk=40
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(a) t=0. (b) t=1.9658

(c) t=3.933 (d) t=4.4694

(e) t=6.3687

Figure 35: Isosurfaces of vorticity magnitude for a polynomial of the 9th order
with a grid Ni=Nj=25 and Nk=40
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(a) t=0. (b) t=1.9064

(c) t=3.9727 (d) t=4.6081

(e) t=6.3687

Figure 36: Isosurfaces of vorticity magnitude for a polynomial of the 9th order
with a grid Ni=Nj=25 and Nk=45
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(a) t=0. (b) t=1.9205

(c) t=3.9798 (d) t=4.5289

(e) t=6.3687

Figure 37: Isosurfaces of vorticity magnitude for a polynomial of the 13th

order with a grid Ni=Nj=17 and Nk=25
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Figure 38: Isosurfaces of vorticity magnitude of run DNS2 (Trot =
2πrc/Vθmax).[16]
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Figure 39: Plot of the integrated total kinetic energy error versus time for
the cases
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Figure 40: Plot of the integrated total kinetic energy normalized for each
case versus time
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7 Conclusions

In conclusion these simulations show the high applicability of the DG method
utilizing the Euler equations to a range of problems. The method was further
improved by taking the Klöckner sensor and augmenting it to improve it’s
capabilities and make it more robust. In devising a new system with which
to apply the baseline modal decay to the sensor allowing for the sensor to
work on values with a norm value of zero as well as speed which was one of
the main goals of this report and its most important findings. The savings
in cost also reduce the flop count in a two dimensional simulation by N3

fp/2
per cell per timestep and for three dimensional to reduce it by N4

fp/3 flops.
This sensor was then taken and applied to the three dimensional vortex

bursting problem and provided accurate results in showing the vortex burst
occurring as well as the helical instability developing. This was done without
the need to work with either a LES or DNS simulation saving immensely
in the complexity of the code as well as the required number of arbitrary
coefficients that must be utilized in a turbulence model. The number of cells
in the axial direction was shown to be the most important factor in seeing the
development of the helical instability while the resolution in the transverse
directions played more of a role in the pressure distribution charts. The 9th

order polynomial was superior to the 13th order due to the increase in speed
it allowed as well as the better overall accuracy.
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